Example 7.
Insufficiency of the optimality
conditions (Part 2)
In this example, we consider an optimal control problem for a system with fixed final state and isoperimetric condition. Although we cannot expect the set of admissible controls to be convex under such conditions, we will prove that the problem is solvable. To obtain the necessary optimality conditions, we use the method of Lagrange multipliers, which allows us to generalize the results outlined in Introduction.
The system includes two differential equations for the main state and the adjoint state, a relative extremum problem, and a specific algebraic equation for the Lagrange multiplier. After some transformations, the obtained rela​tions are reduced to a rather simple boundary value problem for a nonlinear differential equation of the second order which possesses some remarkable properties.
The analysis of the boundary value problem involves finding a nontrivial solution and a sequence of transformations that take one solution into another. As a result, we will show that the boundary value problem has infinitely many solutions, but most of them are nonoptimal.
7.1.     PROBLEM FORMULATION

The system is described by the Cauchy problem
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(7.1)
The control и = u(t) is chosen from the set U of functions that transform the system into the zero final state, i.e., such that
х(1) = 0 ,



(7.2)

with the additional condition
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(7.3)
The optimality criterion is defined by the formula
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Problem 7. Find a control 
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 minimizing the functional I on U.
The essential specific feature of this problem is the presence of condition (7.3) which is called isoperimetric.
Remark 7.1. It might seem that the minimum of the functional is equal to zero, being achieved at the unique control identically equal to zero. Indeed, the corresponding system state determined from problem (7.1) is also trivial; therefore, it satisfies the boundary condition (7.2). In this case, however, the isoperimetric condition (7.3) fails. Hence, the trivial control is not admissible and cannot be a solution of Problem 7. Thus, although the functional has such a simple form, this problem is far from being trivial. This is explained by the fact that the structure of the set of admissible controls defined by (7.2) and (7.3) is highly complex.
Because of the specific form of the set of admissible controls, we need improved methods for proving the solvability of the problem and obtaining the optimality conditions.
7.2.     THE EXISTENCE OF AN OPTIMAL CONTROL
The optimization problem formulated above essentially differs from the pre​vious ones in the structure of the set of admissible controls. For this reason, it is by no means obvious that the problem is solvable, and we will start our analysis with the proof of solvability. Unfortunately, we will not be able to use the existence theorems obtained above because the set U is obviously nonconvex.

Indeed, if a control и is admissible, then -u is admissible as well because changing the sign of the control implies the change of sign of the system state function, so that conditions (7.2) and (7.3) remain satisfied. At the same time, the half-sum of these functions is identically equal to zero and therefore does not satisfy (7.3). Note that (7.3) defines a spherical surface in the space of functions whose fourth power is integrable, which is certainly not convex. Nevertheless, we will see that this obstacle does not prevent us from establishing the existence of an optimal control.
We now specify the function spaces that allow us to formulate the prob​lem in a more compact form. The space 
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 consists of functions x = x(t) whose fourth power is Lebesgue integrable in the interval (0,1), i.e.,
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The Sobolev space 
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 is a space of functions x = x(t) vanishing at t=0 and t=1 and square-integrable over the interval (0,1), their first (generalized) derivatives also being integrable over (0,1):
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The space 
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 is a reflexive Banach space with the norm
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The space 
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A sequence {xk} weakly converges to an element x in the space 
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We put X=
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. Then we obtain the problem of minimizing the functional I on the subset V of the space X. This formulation of Problem 7 is more convenient for our analysis.

Since the functional I is nonnegative and therefore bounded from below, it has the lower bound in V. This means that there exists a minimizing sequence {xk} such that 
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 (7.4)
We now use the coerciveness of the functional to prove that the minimizing sequence is bounded. Assume the contrary. If the sequence {xk} is not bounded, i.e., 
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. This contradicts the fact that {xk} is a minimizing sequence. It follows that {xk} is bounded. By the Banach—Alaoglu theorem, there is a subsequence of {xk} (which will be again denoted by {xk} for simplicity) such that 
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By the Rellich-Kondrashov theorem (from the theory of the Sobolev spaces), if 
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Remark 7.2. In the foregoing statement, the condition that the domain of definition of all the functions is one-dimensional is essential.
Hence, 
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Conditions (7.1) yield the equality
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Passing to the limit in this equality, we obtain
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We conclude that 
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Remark 7.3. The convexity of the set of admissible controls was used in the proof of the solvability of the extremum problem for establishing that the limit of the minimizing sequence is admissible. As we now see, the latter can be established without using the convexity of the set of admissible controls, which should allow us to achieve our goals.

Remark 7.4. In fact, we have proved that the set V is weakly closed, i.e., it contains the limits of all its weakly converging sequences. In the general theorem of existence of a solution of the extremum problem, the convexity of the set of admissible controls was used to prove that it was weakly closed.
Being equal to the squared norm in a Hilbert space, the functional I is convex and continuous. Therefore, it is weakly lower semicontinuous. Then the condition that 
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By (7.4), the right-hand side of this inequality is equal to inf I(V). Hence, I(x) < inf I(V).
This relation can only hold as an equality because the value of I at any element of V cannot be less than its lower bound. We conclude that
х(V ,  
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This means that x is a point of minimum of the functional I on the set V and therefore the problem in question is solvable.
Conclusion 7.1. Problem 7 is solvable.
Conclusion 7.2. If the set of admissible controls is nonconvex, this is not an insuperable obstacle in the analysis of the optimal control problem.
Remark 7.5. Although we have proved that the problem is solvable, the fact that the set of admissible controls is nonconvex will affect further results. Namely, condition (7.3) is the cause of unfavourable properties of the system of optimality conditions to be obtained below.
7.3.    NECESSARY CONDITION FOR AN EXTREMUM
As in the proof of the existence of an optimal control, additional difficulties arise when deducing the necessary conditions for an extremum, which is caused by the isoperimetric condition. These difficulties can be overcome by means of the method of Lagrange multipliers. We introduce the auxiliary functional
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where
H(u,x,p,)  =  up – u2/2 – (x4 –1).
If the functions и and x satisfy (7.1)-(7.3), the functionals I and L coincide. 
Suppose that a function и is an optimal control, i.e., the following in​equality holds for all admissible controls v:
(I = I(v,y) – I(u,x) ( 0,
where x and у are the solutions of (7.1) for the controls и and v  respectively. Since I and L coincide, the foregoing inequality is reduced to the form
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Further transformations yield
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where η is a higher-order term in ∆x =у - x. 
Having determined the adjoint equation
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(7.5)
we arrive at the inequality
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This readily implies the maximum principle:
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 (7.6)
Conclusion 7.3. For the control и to be a solution of Problem 7, it is necessary that it satisfy the maximum condition (7.6).

Conclusion 7.4. The optimality conditions in the form of the maximum principle can be established even in the presence of isoperimetric conditions.
Thus, for the three unknown functions и, x, p and the number λ, we have the system consisting of two differential equations of the first order, the boundary conditions (7.1), (7.2), (7.5), the global extremum problem (7.6), and equality (7.3). The number and structure of relations in the system of optimality conditions obviously agrees with the number and structure of the unknown quantities. We may now begin the analysis of the problem.
7.4.    TRANSFORMATION OF
THE OPTIMALITY CONDITIONS
From the system (7.1)-(7.3), (7.5), (7.6), we obtain the problem for the single unknown function x. Equating the derivative of H to zero yields и=p, which allows us to eliminate the control from the system of optimality conditions. Differentiating the state equation (7.1) and using (7.5), we have
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 (7.7)
Multiplying this expression by x and integrating the result, we obtain
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In view of the isoperimetric condition (7.3), the foregoing equality is written as
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Substituting this value into (7.7), we arrive at the equality
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(7.8)
Thus, the optimal system state satisfies the integro-differential equa​tion (7.8) with the homogeneous boundary conditions
х(0) = 0 ,  х(1) = 0 .


 (7.9)
Conclusion 7.5. Necessary optimality conditions in optimization problems with isoperimetric conditions may be reduced to an integro-differential equation.

Remark 7.6. If a function x is a nonzero solution of the boundary value problem (7.8), (7.9), then it certainly satisfies the isoperimetric con​dition (7.3). Indeed, after multiplying both sides of equality (7.8) by x, we first integrate the result over the given interval. Then we integrate by parts taking into account the boundary conditions (7.9), cancel the square of the norm of x in the Sobolev space, and finally obtain condition (7.3) as a result. Thus, we will not have to verify the validity of this condition for nonzero solutions of problem (7.8), (7.9) to be obtained in the sequel.
To simplify the obtained relations, we introduce the function
y(t)  =  || x || x(t) ,  t((0,1) . 

(7.10)
We have
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It follows that у satisfies the nonlinear ordinary differential equation
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 (7.11)
with the boundary conditions
      у(0) = 0 ,  у(1) = 0. 


 (7.12)
Suppose that a solution у of the problem (7.11), (7.12) has been found. Then condition (7.10) implies that
|| y ||  =  || x || 2.
As a result, we obtain
х(t)  =  || x || -1 у(t)  =  || у || -1/2 у(t).
Thus, knowing a solution of the problem (7.11), (7.12), it is possible to solve the Euler equation for the variational problem in question using the formula
х(t)  =  || x || -1 у(t)  =  || у || -1/2 у(t) ,  t((0,1) . 
(7.13)
Conclusion 7.6. Problem 7 can be reduced to the boundary value problem (7.11), (7.12).
Remark 7.7. After finding a solution of the problem (7.11), (7.12), we can determine the state of the original system using formula (7.13). Differ​entiating this system state, from equation (7.1) we obtain the corresponding control.
7.5.     ANALYSIS OF THE BOUNDARY VALUE PROBLEM
Consider the nonlinear boundary value problem (7.11), (7.12), which is of independent interest. The function identically equal to zero is obviously a solution of this problem. At the same time, if x is an optimal state in Problem 7, the isoperimetric condition implies that x is nontrivial and it satisfies the necessary condition for an extremum (7.8). Then the function у defined by formula (7.10) is also nontrivial and is a solution of the boundary value problem (7.11), (7.12).
Conclusion 7.7. The boundary value problem (7.5), (7.6) has more than one solution. In addition to the trivial solution, there exists a nontrivial solution related to the optimal state in Problem 7.
The trivial solution of the extremum condition (7.8) cannot be a solu​tion of the variational problem since it does not satisfy the isoperimetric condition. Therefore, the set of solutions of the necessary condition for an extremum is certainly larger than the set of solutions of the original problem.
Conclusion 7.8. The necessary condition for an extremum is not suf​ficient in the present problem.
The question arises of whether the boundary value problem (7.11), (7.12) has only two solutions. If it were true, the variational problem would have a unique solution. However, if a; is a solution of the variational problem, then the function —ж satisfies the isoperimetric condition, the values of the functional / at x and —ж being the same. Since the solution of the problem is nonzero in view of the isoperimetric condition, we come to the following conclusion.
Conclusion 7.9. The solution of the isoperimetric problem is not unique: if x is a solution of the problem, so is -x.
Note that the set of solutions of (7.8) and (7.11) is also invariant with respect to changing the sign of solutions: if a function is a solution of these equations with homogeneous boundary conditions of the first order, then changing its sign yields a new solution.
Conclusion 7.10. The boundary value problem (7.11), (7.12) has at least three solutions: one solution is trivial and two others correspond to the solutions of the variational problem.
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Figure 28. Possible symmetric solutions of problem (7.11), (7.12)
We do not know yet if these problems have any other solutions, but the way we found the last solution (the second for the variational problem and the third for the boundary value problem) provides the clues. We will try to find other transformations that take one solution of the problem into another.
Direct verification shows that if a function у is a solution of the boundary value problem (7.11), (7.12), then so are the functions
z1(t) = y(1 – t) ,  z2(t) = -y(1 – t) ,  t((0,1).
There are two alternatives.   Let у satisfy one of the conditions of being symmetric with respect to the middle of the time interval (see Figure 28)
                               у(t)  =  y(1 – t) ,  t((0,1) , 

(7.15)
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Figure 29. Possible nonsymmetric solutions of problem (7.11), (7.12)
у(t)  =  -y(1 – t) ,  t((0,1) ,                              (7.16)
Then equalities (7.14) do not yield new solutions. If the solution is not symmetric, then we obtain new solutions of the boundary value problem. If a nontrivial solution of problem (7.11), (7.12) does not satisfy (7.15) or (7.16), then the problem has at least five solutions, four of them being nontrivial solutions of the variational problem.
Let Y denote the set of nontrivial solutions of the boundary value prob​lem. As we know, there are three transformations that take elements of this set to its other elements (see Figure 29):
А1 y(t) = -y(t) ,  А2 y(t) =  y(1 – t) ,  А3 y(t) =  -y(1 – t) ,  t((0,1).
We can also mention the identity transformation A0.
Since the composition of transformations defined on Y is also a trans​formation on Y, one would expect that the composition of the above trans​formations must yield new solutions of the problem. However, it is easy to see that composition does not produce transformations other than those already determined (see Figure 30).
It follows that the boundary value problem (7.11), (7.12) has at least three solutions if the nontrivial solutions are symmetric and at least five solutions if the nontrivial solutions are not symmetric. It is possible that other solutions exist.
Consider the boundary value problem of the form (7.11), (7.12) with the equation
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(7.17)
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Figure 30. Composition of the transformations of Y
and the boundary conditions
z(0) = 0 ,  z(а) = 0 ,                            (7.18)
where a is an arbitrary positive number. Suppose that у is a solution of problem (7.11), (7.12). We introduce the function
   z = z(t)  =  a -1 у(t/а) ,  t((0, а) .                   (7.19)
Then
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Thus, we have obtained a solution of problem (7.17), (7.18).
Remark 7.8. For every value of the parameter a, transformation (7.19) produces a new solution of equation (7.11) satisfying the first boundary condition (7.12). The second boundary condition essentially restricts the choice of admissible values of the parameter a.
Let y1 denote a nonzero solution of problem (7.11), (7.12). Then the function
z2 = z2(t)  =  2 у1(2t) ,  t((0,1)
is a solution of problem (7.17), (7.18) for a = 1/2. 
We now introduce the following function (see Figure 31):
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Figure 31. Solutions of problem (7.11), (7.12)
The boundary condition (7.12) holds for y2. This function also satisfies equation (7.11) on the interval (0,1/2) because z = z2(t) is a solution of the equation
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for 0 < t < 1/2. At the same time, z = - z2 (1 - t) is a solution of the same equation for 1/2 < t < 1. Note that y2 is continuously differentiable at t=1/2 if the same is true for y1. As follows from equation (7.11), the second derivative of y2 is equal to the third power of y2 taken with the opposite sign. Then y2 is twice continuously differentiable at t = 1/2. It follows that y2 is a solution of problem (7.11), (7.12) that differs from all previously found solutions. The function -y2 represents another solution. If y1 does not satisfy the symmetry conditions (7.15) or (7.16), then the transformations А2 and A3 can be applied to find two more solutions of the boundary value problem.
Now we have an algorithm of constructing new solutions of our boundary value problem. Obviously, the function
z3 = z3(t)  =  3 у1(3t) ,  t((0,1)
is a solution of problem (7.17), (7.18) for a = 1/3. Then the function
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is also a solution of the boundary value problem (see Figure 31).
Remark 7.9. Here we take into account that for any constant с the shift Ax(t) = x(t - c) transforms solutions of equation (7.11) (without the boundary conditions) into solutions of the same equation. The transforma​tion Bx(t) = x(c-t), which is the composition of a shift and the operator A2, has the same property.
In the general case, for all natural numbers ft, the function 
zk = zk (t)  =  k у1(kt) ,  t((0,1)
is a solution of (7.17), (7.18) for a = 1/k. Repeating the arguments used above, we conclude that the function
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is also a solution of (7.17), (7.18).   One or three more solutions can be obtained by applying the above-mentioned transformations to this function.
Remark 7.10. Any value of the parameter a can be chosen for con​structing solutions that satisfy (7.11). However, the second boundary con​dition in (7.12) can only be satisfied for a = 1/k, where k = 1,2,....
Conclusion 7.11. Tie boundary value problem (7.11), (7.12) has infinitely many solutions.

Remark 7.11. In some of the previous examples, boundary value prob​lems for nonlinear second-order differential equations had infinitely many solutions. It was not unusual since those equations were rather com​plex. It is surprising that the same situation is observed for such simple nonlinear equations in the present example.
Remark 7.12. The next example deals with a boundary value problem similar to (7.11), (7.12) such that the number of its solutions depends on a parameter in the problem formulation.
Remark 7.13. It is not certain that there are no more transformations that produce new solutions of the problem.
Remark 7.14. If we require that equation (7.11) hold almost everywhere rather than at every point of the specified interval and allow nonsmooth and even discontinuous solutions, then we can obtain an uncountably infinite set of solutions on the basis of those already found. Indeed, if func​tions x and у are solutions of our boundary value problem, then the discon​tinuous function coinciding with x on one segment of the interval (0,1) and with у on the other segment will also be a solution of the problem.
7.6.     THE NONLINEAR HEAT CONDUCTION EQUATION WITH INFINITELY MANY EQUILIBRIUM STATES
The results obtained above allow us to establish remarkable properties of a nonlinear parabolic equation related to equation (7.11). Consider the nonlinear heat conduction equation
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(7.20)

with the boundary conditions
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and the initial condition
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We need to investigate the behaviour of this system for 
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, then the function y, which is called an equilibrium state of the system, is a solution of the differential equation
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with the boundary condition  
y(0)=0,       y(l) =0.
It follows that the equilibrium state is a solution of the boundary value problem (7.11), (7.12). We arrive at the following conclusion.                                                                                                                                                                                                                                      
Conclusion 7.12. The system (7.20)-(7.22) has infinitely many equi​librium states.
Realization of a particular equilibrium state depends on the initial state v0.
Remark 7.15. It is again quite surprising that such a simple nonlinear heat conduction equation has infinitely many solutions. Similar situation were observed only in the case of rather complex nonlinearity.
Remark 7.16. The system (7.20)-(7.22) may be used for finding non-trivial solutions of the corresponding stationary problem on the basis of the stabilization method.
7.7.    CONCLUSION OF THE ANALYSIS OF
THE VARIATIONAL PROBLEM
We now return to the analysis of the original variational problem. Using formula (7.13), from the known solution yk of problem (7.11), (7.12), we find the solution
хk(t)  =  || уk || -1/2 уk (t) ,  t((0,1)
of the integro-differential equation (7.8) with homogeneous boundary con​ditions. As was mentioned before, every nontrivial solution of this problem belongs to the set V. We now estimate the value of the functional at xk:
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Using the definition of the function yk (see Figure 31), we have

[image: image63.wmf].

 

 

)

(

 

  

  

 

)

(

 

  

  

 

 

)

(

 

/

1

0

2

1

/

/

)

1

(

2

2

1

0

2

ò

å

ò

ò

=

-

=

=

=

k

k

k

j

k

j

k

j

k

k

k

dt

t

y

k

dt

t

y

y

dt

t

y

&

&

&


From the equality
yk(t)  =  k y1(kt) ,  0 < t < 1/k.
 it follows that
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As a result, we obtain the formula
I(xk)  =  k2 || y1 || ,  k = 1, 2, … .
Among all the obtained solutions of the necessary conditions for an extremum, the solution y1 (as well as the functions obtained from y1 using the transformations Ai) provides the minimum value of the functional. To find the optimal system state, we need to apply formula (7.13). Differentiating the resulting function, we find the optimal control from equation (7.1).
Remark 7.17. We have not explicitly determined the function y1. We have only established that it exists and possesses certain properties. For the complete solution, we need to explicitly solve the problem (7.11), (7.12). Since the equation is nonlinear, it is necessary to apply some approxima​tion method for solving boundary value problems for differential equations. The determination of y1 may involve considerable difficulties because this problem is not uniquely solvable.
Remark 7.18. It is not known whether y1 satisfies the symmetry condi​tions (7.15) or (7.16), i.e., whether the variational problem has two or four solutions. Apparently, this can be clarified only after finding the function y1.
Remark 7.19. It is not certain that we have found all solutions of the boundary value problem (7.11), (7.12) and, consequently, of the necessary condition for an extremum (7.8). There may exist various sets of solutions defined by y1 which are not related to each other by the above transfor​mations. If there is at least one more function y1, then another infinite set of solutions of our boundary value problem can be obtained using the technique described above.

SUMMARY
The analysis of the present example yields the following conclusions.
1. The existence of an optimal control can be established without using the property of convexity of the set of admissible controls.
2. The maximum principle may be established even for optimization problems with isoperimetric conditions.
3. If the set of admissible controls is nonconvex, the solution of the extremum problem may be nonunique and the optimality conditions may be insufficient.
4. The necessary optimality conditions in the optimization problems with isoperimetric conditions may be represented by integro-differential equations.
5. Boundary value problems with very simple nonlinearity may have in​finitely many solutions.
6. The heat conduction equation with simple nonlinearity may have in​finitely many equilibrium states.
7. When the problem is not uniquely solvable, it is possible to find trans​formations that can be used to construct new solutions based on the known solutions.
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